RoCK blocks, wreath products and KLR algebras

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On the Representation Dimension of Skew Group Algebras, Wreath Products and Blocks of Hecke Algebras

We establish bounds for the representation dimension of skew group algebras and wreath products. Using this, we obtain bounds for the representation dimension of a block of a Hecke algebra of type A, in terms of the weight of the block. This includes certain blocks of group algebras of symmetric groups.

متن کامل

Vertex Algebras and the Class Algebras of Wreath Products

The Jucys-Murphy elements for wreath products Γn associated to any finite group Γ are introduced and they play an important role in our study on the connections between class algebras of Γn for all n and vertex algebras. We construct an action of (a variant of) the W1+∞ algebra acting irreducibly on the direct sum RΓ of the class algebras of Γn for all n in a group theoretic manner. We establis...

متن کامل

Quantum algebras and symplectic reflection algebras for wreath products

To a finite subgroup Γ of SL2(C), we associate a new family of quantum algebras which are related to symplectic reflection algebras for wreath products Sl o Γ via a functor of Schur-Weyl type. We explain that they are deformations of matrix algebras over rank-one symplectic reflection algebras for Γ and construct for them a PBW basis. When Γ is a cyclic group, we are able to give more informati...

متن کامل

Folding Klr Algebras

This paper develops the theory of KLR algebras with a Dynkin diagram automorphism. This is foundational material intended to allow folding techniques in the theory of KLR algebras.

متن کامل

Wreath Products and Kaluzhnin-krasner Embedding for Lie Algebras

The wreath product of groups A B is one of basic constructions in group theory. We construct its analogue, a wreath product of Lie algebras. Consider Lie algebras H and G over a field K. Let U(G) be the universal enveloping algebra. Then H̄ = HomK(U(G), H) has the natural structure of a Lie algebra, where the multiplication is defined via the comultiplication in U(G). Also, G acts by derivations...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematische Annalen

سال: 2016

ISSN: 0025-5831,1432-1807

DOI: 10.1007/s00208-016-1493-z